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Abstract Consider an inviscid Burgers equation whose initial data is a Lévy α-stable
process Z with α > 1. We show that when Z has positive jumps, the Hausdorff dimension of
the set of Lagrangian regular points associated with the equation is strictly smaller than 1/α,

as soon as α is close to 1. This gives a partially negative answer to a Conjecture of Janicki
and Woyczynski (J. Stat. Phys. 86(1–2):277–299, 1997). Along the way, we contradict a re-
cent Conjecture of Z. Shi (http://www.proba.jussieu.fr/pageperso/smalldev/pbfile/pb4.pdf)
about the lower tails of integrated stable processes.

Keywords Burgers equation · Hausdorff dimension · Integrated stable process · Lower tail
probabilities · Shock structure

1 Introduction and Statement of the Results

Since the seminal paper [21], statistical properties of the Burgers equation

∂tu + u∂xu = ν∂xxu, ν > 0 (1.1)

with initial condition u0(x) := u(0, x) = Xx where {Xx , x ∈ R} is a given random process,
have given rise to intensive research. Even though (1.1) is a much simplified version of
the Navier-Stokes equation, it is still relevant in physics as a model equation for e.g. shock
waves in hydrodynamics. From the mathematical point of view, a nice feature of (1.1) is the
possibility to solve it explicitly through the change of variable u = −∂xψ , which is known
as the Hopf-Cole substitution: one has

ψ(t, x) = 2ν log

[
(4πνt)−1/2

∫
R

exp

[
1

2ν

(
ψ0(a) − (x − a)2

2t

)]
da

]
, (1.2)

where ψ0 is the initial potential given by u0 = −∂xψ0.
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The inviscid Burgers equation is a simplified version of (1.1) where the viscosity para-
meter ν = 0, and its so-called Hopf-Cole solution is obtained from (1.2) in letting ν → 0.
By Laplace approximation, it takes a particularly nice form:

ψ(t, x) = sup
a∈R

{
ψ0(a) − (x − a)2

2t

}
, (1.3)

which is well-defined provided the initial potential satisfies ψ0(a) = o(a2) when |a| → +∞.

We refer e.g. to the monograph [22] for the above facts, and much more, concerning Burgers
equation.

In this paper, we are interested in the inviscid Burgers equation whose initial data is a
two-sided Lévy α-stable process. More precisely, we suppose that the initial condition X is
defined as follows:

Xx =
{

Zx if x ≥ 0

−Z′−x if x ≤ 0,
(1.4)

where Z = {Zx, x ≥ 0} is a Lévy α-stable process and Z′ an independent copy of Z. Re-
ferring to Chapter VIII in [2] for more details, let us recall that Z is a real process with
stationary and independent increments, which is (1/α)-self-similar:

{Zkx, x ≥ 0} d= {k1/αZx, x ≥ 0}, (1.5)

for all k > 0. This property forces the stability index α to be in (0,2], and Z is Brownian
motion (up to a scaling parameter) in the case α = 2. When α �= 1, the Lévy-Khintchine
exponent �(λ) = − log E[eiλZ1 ] is given by

�(λ) = κ|λ|α(1 − iβsgn(λ) tan(πα/2)), λ ∈ R,

where κ > 0 is the scaling parameter and β ∈ [−1,1] is the skewness parameter. Without
loss of generality, in the following we will suppose κ ≡ 1. The positivity parameter

ρ = P[Z1 > 0]
takes its values in [1 − 1/α,1/α] when α > 1 and in [0,1] when α < 1. When α > 1, the
value ρ = 1 − 1/α corresponds to the spectrally positive situation (β = 1 and Z has no
negative jumps) and the value ρ = 1/α to the spectrally negative situation (β = −1 and Z

has no positive jumps). When α < 1 and ρ = 0 (resp. α < 1 and ρ = 1), Z is the negative of
a subordinator and has no positive jumps (resp. a subordinator and has no negative jumps).
When α = 1, the Lévy-Khintchine exponent is given by

�(λ) = κ|λ| + idλ, λ ∈ R,

where κ > 0 is the scaling parameter and d ∈ (−∞,+∞) is the drift parameter. The posi-
tivity parameter ρ ∈ (0,1) and Z has jumps in both directions.

The law of the iterated logarithm for Z at infinity, see e.g. Theorem VIII.5 in [2], entails

lim sup
x→+∞

x−κZx = 0 or + ∞ according as κ > 1/α or κ ≤ 1/α.

Hence, since our initial potential is given up to some meaningless additive constant by

ψ0(x) = −
∫ x

0
Xt dt, x ∈ R,
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the growth condition ψ0(a) = o(a2) at infinity assigns the restriction

α ∈ (1,2]
on the stability parameter, which will be supposed henceforth unless otherwise explicitly
stated.

Differentiating (1.3) with respect to x yields readily the following formula for the Hopf-
Cole solution of (1.1):

u(t, x) = x − a(t, x)

t
,

where a(t, x) is the largest point attaining the maximum in (1.3), in other words:

a(t, x) = max
{
s ∈ R,C ′

t (s) ≤ xt−1
}
,

where C ′
t stands for the right-derivative of Ct, which is the convex hull of the function

x 
→
∫ x

0
(Xu + ut−1)du.

The so-called Lagrangian regular points of (1.1) are the points where the above function
coincides with its convex hull. Notice that this time-dependent set Lt can be described in
terms of the function a(t, x):

Lt = {a(x, t), x ∈ R and a(x−, t) = a(x, t)}.
From the physical point of view, Lt is the set of the initial locations of particles which
have not collided up to time t by the turbulence governed by (1.1), see [22], and for this
reason there has been some interest over the years in describing the structure of the sets Lt ,
especially in studying their fractal properties. In [14], the authors raised the following

Conjecture (Janicki and Woyczynski) For every t > 0, one has

DimHLt = 1/α a.s.

It is easy to see that the Hausdorff dimension of Lt does not, indeed, depend on t in this
model. Namely, from the self-similarity of Z one can show, see [14] p. 285, that

u(t, x)
d= t1/(α−1)u(1, xtα/(α−1)),

which entails that a.s. DimHLt = DimHL1 for every t > 0. In the following, we will be
therefore interested in the set L1 only, which we denote by L for the sake of simplicity.

Notice that the above Conjecture had been previously solved (without complete proof)
by Sinai [21] in the Brownian case α = 2, and that Bertoin [3] showed then rigorously
the result in the general case α ∈ (1,2] with no positive jumps, as a consequence of
the remarkable fact that the process x 
→ a(x,1) is a subordinator which is close to the
(1/α)-stable one, see Theorem 2 in [3]. Nevertheless, this latter property is no more true in
the non spectrally negative framework, see the conclusion of [3], and the structural study
of (1.1) seems to require an entirely different methodology when there are positive jumps.
To this end, let us also mention an attempt made in [6] with the concept of statistical solution
(which is different from the Hopf-Cole solution).

In this paper we show that Janicki and Woyczynski’s Conjecture is false in general when
there are positive jumps:
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Theorem A For every c > 0, there exists α0 > 1 such that for every α ∈ (1, α0) and every
ρ ∈ [1 − 1/α, (1 − c) ∧ (1/α)], if L is the set of Lagrangian regular points associated with
the inviscid Burgers equation whose initial data is an α-stable Lévy process with positivity
parameter ρ, then

DimHL < 1/α a.s.

Our main argument comes from a recent paper by Molchan and Khokhlov [16], who
were interested in the sets Lt of Lagrangian regular points of (1.1) when the initial data is a
two-sided fractional Brownian motion W . In [16], they proved that an a.s. upper bound on
DimHLt —which is also independent of t > 0 by the self-similarity of W—follows from a
lower bound on the exponent κ appearing in the estimate

P

[∫ t

0
Ŵsds < ε + t2,∀t ∈ [−1,1]

]
≤ εκ, ε → 0,

where Ŵ = −W
d= W is the dual process of W . We remark that this argument transfers to

the Lévy stable case without much difficulty, and is actually even simpler because of the
independence and stationarity of the increments of X. This will be done in Sect. 3. Before
this, we will have to prove a crucial estimate on the first-passage time of the integrated stable
process. Let us first introduce

At =
∫ t

0
Zsds, t ≥ 0,

the integral of a Lévy α-stable process Z—with the same notation as above, but this time
for every α ∈ (0,2]—and T = inf{t > 0,At = 1} the first-passage time of A across 1.

Theorem B For every α0, c > 0 there exists κ > 0 such that for every α ∈ [α0,2] and every
α-stable Lévy process Z with parameter ρ ∈ [c ∨ (1 − 1/α),1/α ∧ 1],

lim inf
t→∞ tκP[T > t] = 0.

This result, which will be proved in Sect. 2, is interesting in its own right because it
contradicts another Conjecture [19] whose solution had been announced (with a hidden
error) by the author in [9], and whose statement was the following:

Conjecture (Shi) For every α > 1, if Z is an α-stable symmetric Lévy process, then

P[T > t] = t−(α−1)/2α+o(1), t → ∞. (1.6)

Indeed, taking c = α0 = 1/2 and then ρ = 1/2 in Theorem B, we see that the above
conjecture is contradicted as soon as α is close enough to 1. Notice that in a recent paper
[20] the author proved (1.6) in the case where Z has no negative jumps and α > 1. The
idea—which had been originally given by Z. Shi—consisted in time-changing the process
A through τ the inverse local time of Z and considering the fluctuations of the Lévy stable
process Aτ . We have been thinking for a long time that this method would be also successful
when Z has negative jumps, because Aτ is a Lévy symmetric (α −1)/(α +1)-stable process



Burgers Equation with Stable Initial Data 737

whatever the value of ρ should be, see Lemma 1 in [20], which allows in particular to obtain
a general upper bound

P[T > t] ≤ Kt−(α−1)/2α, t → ∞,

for every value of ρ ∈ [1 − 1/α,1/α] and some finite constant K, see Theorem A in [20].
It now appears that this subordination method is too crude when there are negative jumps,
and yields only an upper bound which is not optimal, at least when α is close to 1. In this
paper, we will obtain a uniform upper bound by discretization through exponential time-
change combined with FKG-type inequalities, all of which we learned from Caravenna and
Deuschel in the genesis of their paper [5]. Let us stress that these arguments are also by
far non optimal. Nevertheless they are quite robust and, since they involve eventually only
fixed upper tails of Z and A which can be bounded independently of α, this method makes
it at least possible to contradict both Janicki-Woyczynski and Shi’s Conjectures when α is
close to 1. Actually, we believe that these Conjectures are false for all values of α except
when there are no positive jumps (for the first) or no negative jumps (for the second), and
in the fourth and last section of the paper we will state two other Conjectures for the val-
ues of DimHL and the critical exponent in (1.6), in a general non completely asymmetric
framework.

2 Proof of Theorem B

Fix c,α0 positive close to 0. We begin with the case α > 1, and we will actually obtain a
slightly stronger result which will be crucial for Theorem A: setting γ = (α − 1)/α > 0, we
will show that there exists κ > 0 such that

lim inf
t→+∞ tκP

[
As < 1 + s + t−γ s2,∀ s ≤ t

] = 0, (2.1)

for every α > 1 and every ρ ∈ [c ∨ (1 − 1/α),1/α], which readily entails Theorem B by
comparison. We first define an exponential subsequence of times, introducing the events

An = {
A2m < 1 + 2m + 4m−nγ ,m = 0 . . .2n

}
, n ≥ 0.

Clearly, it is enough to prove that there exists κ > 0 such that for every α > 1 and every
ρ ∈ [c ∨ (1 − 1/α),1/α],

P[An] ≤ e−κn,

for n sufficiently large. We will obtain slightly more, in showing that

P[Bn] ≤ e−κn, (2.2)

where Bn = {A2m < 1 + 2m + 4m−nγ , m = 0 . . . n}, n ≥ 0. To do so, we will consider the
events Ck = {Z2k > −2k/α , A2k > −2k(1+1/α)}, k ≥ 0, and the family of random times defined
recursively by

σ0 = 0 and σn = inf{k > σn−1/Ck occurs}, n ≥ 1.

If {Ft , t ≥ 0} stands for the completed σ -field generated by {Zs, s ≤ t}, then 2σn is a Ft -
stopping time for every n ≥ 0. Denoting henceforth by [x] the integer part of any real num-
ber x, we now state a crucial Lemma which is mainly borrowed from [5]:
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Lemma For every c > 0, there exist δ,λ > 0 such that for every α > 1 and every ρ ∈
[c ∨ (1 − 1/α),1/α],

P[σ[δn] < n | Bn

] ≥ λ

for all n sufficiently large.

Taking this Lemma for granted and setting K = λ−1 < +∞ we see that

P[Bn] ≤ KE[σ[δn] < n,Bn]
≤ KE[A2m < 1 + 2m + 4m−nγ ∀m = σ1 + 1, . . . , σ[δn] + 1, σ[δn] < n].

Introducing the notation

Gk = Fσk
and Dn

k = {A2m < 1 + 2m + 4m−nγ ∀m = σ1 + 1, . . . , σk + 1},

for every n, k ≥ 1, the strong Markov property at time 2σ[δn] yields

P
[
Dn

[δn], σ[δn] < n
] ≤ P

[
1Dn[δn]−1∩{σ[δn]<n}P

[
A2σ[δn]+1 < 1 + 2σ[δn]+1 + 4σ[δn]+1−nγ | G[δn]

]]
≤ P

[
1Dn[δn]−1∩{σ[δn]<n}P

[
A2σ[δn]+1 < 1 + 2σ[δn]+1 + 22+2σ[δn]/α | G[δn]

]]
,

where in the second line we used the event {σ[δn] < n}. On the other hand, again by the
strong Markov property, conditionally on G[δn] we can decompose

A2σ[δn]+1 = A2σ[δn] + 2σ[δn]Z2σ[δn] + Â2σ[δn] ,

where Â is a copy of A independent of G[δn]. By the definition of σ[δn], this yields

P[A2σ[δn]+1 < 1 + 2σ[δn]+1 + 22+2σ[δn]/α | G[δn]] ≤ P[Â2σ[δn] < 22+σ[δn](1+1/α)

+ 22+2σ[δn]/α | G[δn]]
≤ P[Â2σ[δn] < 23+σ[δn](1+1/α) | G[δn]]
≤ P[A1 < 8],

where we used the fact that α > 1 in the second line, and the (1 + 1/α)-self-similarity of Â

independent of G[δn] in the third. But from Proposition 3.4.1 in [18], we know that A1 is a
real α-stable random variable whose Lévy-Khintchine exponent �(λ) = − log E[eiλA1 ] is
given by

�(λ) = (α + 1)−1|λ|α(1 − iβsgn(λ) tan(πα/2)), λ ∈ R,

where β is the skewness parameter of Z1. In particular, its positivity parameter is
P[A1 > 0] = ρ > c and its scaling parameter belongs to [1/3,1/2). This clearly en-
tails that there exists κ < 1 such that P[A1 < 8] ≤ κ for every α > 1 and every
ρ ∈ [c ∨ (1 − 1/α),1/α]. Let me stress that this argument breaks down when there are
no negative jumps, since then P[A1 < 8] → 1 for ρ = 1 − 1/α and α → 1. We finally obtain

P
[
Dn

[δn], σ[δn] < n
] ≤ κP

[
Dn

[δn]−1, σ[δn] < n
] ≤ κP

[
Dn

[δn]−1, σ[δn]−1 < n − 1
]
.
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An induction argument and the fact that above the event {σ[δn] < n} is only used to obtain
the upper bound 4σ[δn]+1−nγ ≤ 22+2σ[δn]/α entail then

P
[
Bn

] ≤ P
[
Dn

[δn], σ[δn] < n
] ≤ κ [δn],

for every α > 1 and every ρ ∈ [c∨ (1−1/α),1/α], as soon as n is large enough. This yields
(2.2) as desired, and completes the proof of Theorem B when α > 1. The case α ≤ 1 can be
handled in the same way in working on the events

B′
n = {A2m < 1 + 2m,m = 0 . . . n}, n ≥ 0,

and establishing the above Lemma for every α > α0 and every ρ ∈ [c ∨ (1 − 1/α),
(1/α) ∧ 1], with Bn replaced by B′

n. We leave the details to the reader. However, for the
sake of completeness and since our arguments are partly different from [5], we will give the

Proof of the Lemma Fix c,α0 > 0 and set Pn[.] = P[ . |Bn] for concision. By the definition
of σ[δn], we have for every δ > 0

Pn[σ[δn] < n] = 1 − Pn

[
n∑

k=1

1Cc
k
> δ′n

]
≥ 1 − 1

δ′n

n∑
k=1

P[Cc
k ]

= 1

δ′n

n∑
k=1

Pn[Ck] − δ

δ′ ,

where we set δ′ = 1 − δ for conciseness. Hence, it suffices to prove the existence of λ > 0
such that for every α ≥ α0 and every ρ ∈ [c ∨ (1 − 1/α), (1/α) ∧ 1] such that

Pn[Ck] ≥ c,

for every k ∈ [1, n] and every n sufficiently large, since then choosing any δ < λ completes
the proof of the Lemma. To do so, we will first consider the events

Dk,n = {Zt < 2−(n−k)/α,∀t ∈ [0,2n+k]} ⊆ Bn,

and prove the intuitively obvious inequalities

Pn[Ck] ≥ P[Ck | Dk,n], (2.3)

for every n ≥ 1 and every k ∈ {1 . . . n}, with the help of a discretization of Z and a FKG
argument. Fixing k and n, set

ZN
t =

∑
1≤i≤tN

(
Z i

N
− Zi−1

N

)
and AN

t = 1

N

∑
1≤i≤tN

(∑
j≤i

(
Z j

N
− Zj−1

N

))
,

for every t ≥ 0, N ≥ 1. It is well-known and easy to see that the bivariate process

{(ZN
t ,AN

t ), t ∈ [0,2n+k]}
converges in law towards {(Zt ,At ), t ∈ [0,2n+k]} for the Skorokhod topology when
N → ∞. Hence setting BN

n , CN
k , DN

k,n for the events Bn, Ck , Dk,n with (Z,A) replaced by
(ZN,AN), by weak convergence and right continuity it suffices to show

P[CN
k | BN

n ] ≥ P[CN
k | DN

k,n], (2.4)
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for every N ≥ 1. The key-point is that the probabilities of the events BN
n , CN

k , DN
k,n and

their intersections depend only on the joint law P
N of the increments {(Z i

N
− Zi−1

N
), i =

1, . . . ,N2n+k}, which are stationary and independent. The measure P
N has the density

f (x) =
N2n+k∏
i=1

g(xi), (2.5)

with respect to the Lebesgue measure on R
N2n+k

, where g is the density of the variable Z 1
N

,

and the density of the conditional measure P
N
n [.] = P

N [. | B̂N
n ] with respect to the Lebesgue

measure on R
N2n+k

is hence given by

h(x) = 1B̂N
n
f (x)

P[BN
n ] ,

where

B̂N
n =

{
x/

1

N

∑
1≤i≤N2m

(x1 + · · · + xi) < 1 + 2m + 4m−nγ ∀m = 0 . . . n

}
.

Notice that the function 1B̂N
n
(x) is decreasing, in the sense that if xi ≥ yi for all i =

1 . . .N2n+k, then 1B̂N
n
(x) ≤ 1B̂N

n
(y). From (2.5) and this monotonicity property, we deduce

that h satisfies Holley’s criterion:

h(x)h(y) ≥ h(x ∨ y)h(x ∧ y), x, y ∈ R
N2n+k

,

with the notation (x ∨ y)i = xi ∨ yi and (x ∧ y)i = xi ∧ yi for all i = 1 . . .N2n+k. By
Corollary 12 in [13], this entails that the measure P

N
n satisfies the FKG inequality in the

sense that

P
N
n [C ∩D] ≥ P

N
n [C]PN

n [D],
whenever 1C and 1D are increasing functions. On the other hand, the function 1ĈN

k
(x) is

increasing and the function 1D̂N
n
(x) is decreasing, with the same notation as above for ĈN

k

and D̂N
n . This finally entails

P
N
n [ĈN

k ∩ D̂N
n ] ≤ P

N
n [ĈN

k ]PN
n [D̂N

n ],
and, after some elementary transformations using the inclusion DN

k,n ⊆ BN
n , the desired in-

equality (2.4) for every k = 1, . . . , n and n,N ≥ 1. Hence, from (2.3), it suffices to show
that there exists λ > 0 such that for every α > α0 and every ρ ∈ [c ∨ (1 − 1/α), (1/α) ∧ 1],

P[Ck | Dk,n] ≥ c,

for every k ∈ [1, n] and n sufficiently large. A scaling argument yields first

P[Ck | Dk,n] = P̂[Z1 < 1,A1 < 1 | {Zt > −2−n/α,∀t ∈ [0,2n]}],

where P̂ stands for the law of the dual process Ẑ = −Z. By Chaumont’s results, see Re-
mark 1 and Theorem 6 in [7], the conditional law on the right-hand side converges to P̂

↑
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which is the law of Ẑ conditioned to stay positive. Hence, for n sufficiently large, one has

P[Ck | Dk,n] ≥ 1

2
P̂

↑[Z1 < 1,A1 < 1] ≥ 1

2
P̂

↑[S1 < 1],

with the notation S1 = sup{Zt, t ≤ 1}. It is now intuitively obvious by compacity that the
right-hand side can be bounded from below by a positive constant for every α > α0 and
every ρ ∈ [c ∨ (1 − 1/α), (1/α) ∧ 1]. More precisely, using Theorem 1 in [8], one gets

P̂
↑[S1 < 1] = c1

�(ρ)
Ê

(me)[Zαρ

1 1{S1<1}] ≥ c1

�(c)
Ê

(me)[Z2
11{S1<1}],

where P̂
(me) denotes the law of the meander associated to Ẑ and

c1 = Ê

[∫ ∞

0
1{It ≥−1}dLI

t

]
,

with the notation It = inf{Zs, s ≤ t}, t ≥ 0, and where LI stands for the local time process
at zero for Z − I . This constant can be rewritten

c1 =
∫ ∞

0
P[Ht ≤ 1]dt,

where {Ht, t ≥ 0} is the ladder height process of Z, see [2] p. 171. Since the Laplace trans-
form of Ht is a continuous function of the parameters α,ρ, see [2] Corollary VI.10, the same
holds for c1, which hence can be uniformly bounded from below for every α > α0 and every
ρ ∈ [c ∨ (1 − 1/α), (1/α) ∧ 1].

Furthermore, the pathwise representation of the meander given in [2], Proposition VIII.16
yields

Ê
(me)[Z2

11{S1<1}] = Ê

[
1{(

S1−I1
(1−g)1/α

)
<1

}
(

Z1 − I1

(1 − g)1/α

)2]
,

where g = sup{t < 1, It = Zt } follows under P̂ some generalized arcsine law with parameter
ρ and is independent of

1{(
S1−I1

(1−g)1/α

)
<1

}
(

Z1 − I1

(1 − g)1/α

)2

.

This entails

Ê
(me)[Z2

11{S1<1}] = Ê

[
1{

g<1/2,

(
S1−I1

(1−g)1/α

)
<1

}
(

Z1 − I1

(1 − g)1/α

)2]
× (P̂[g < 1/2])−1

≥ Ê
[
1{g<1/2,S1−I1<2−1/α}(Z1 − I1)

2
] × (P̂[g < 1/2])−1

≥ c2Ê
[
1{g<1/2,S1−I1<2−1/α}(Z1 − I1)

2],
for some positive constant c2 independent of α > α0 and ρ ∈ [c ∨ (1 − 1/α), (1/α) ∧ 1]. As
a continuous functional of the law of {Ẑt , t ∈ [0,1]}, the probability on the right-hand side
is a continuous function of the parameters α,ρ and hence is uniformly bounded from below
for every α > α0 and every ρ ∈ [c ∨ (1 − 1/α), (1/α)∧ 1], which completes the proof of the
Lemma and of Theorem B. �
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Remarks

(a) From Theorem A in [20], one obtains the lower bound κ ≥ (α − 1)/2α depending on α.
As we said in the introduction, we had been thinking for a while that Theorem B was
false and that the critical exponent should be (α − 1)/2α for every α > 1 and every
ρ ∈ [1 − 1/α,1/α], in other words, that the lower bound obtained in Theorem B of [20]
is the right one also in the presence of negative jumps. The reason was the following:
from a scaling argument, this desired lower tail would have been a consequence of

P[At < 0, t ∈ [τ1, τn]] ≥ n−1/2+o(1), n → +∞, (2.6)

with the notations of the introduction. Using the results of Novikov [17], it had been
proved in [10] that for any δ > 0, there exists ν(δ) → 0 as δ → 0 such that

P
[
Aτu ≤ −δu(α+1)/(α−1),∀u ∈ [1, n]] ≥ n−1/2+ν(δ), n → ∞. (2.7)

Hence, the gap between (2.6) and (2.7) would have been filled if we could have
proved that the probability that the area A of an excursion reaches u(α+1)/(α−1) and
then −u(α+1)/(α−1) during [τu−, τu] for at least one u ≤ n is smaller than n−1/2−ε for
some ε > 0 as n → ∞. This was our initial intuition because due to the independence
and stationarity of the increments of Z, we believed that the price of a return journey
would be the square of the price of a single journey, and since the latter can be proved
to be smaller than n−1/2+ε for every ε > 0 as n → ∞. From our counterexample, it now
appears that these prices are asymptotically roughly the same.

(b) The proof of the above Lemma would be slightly simpler if we could prove that the
measures Pn themselves satisfy FKG inequality, instead of considering their discretiza-
tions P

N
n . From Example 2.3.6 and Theorem 4.6.1 in [18], and by right-continuity of

the sample paths of Z, we know that the unconditioned measure P satisfies FKG, in the
sense for every time-horizon T > 0 and every bounded measurable increasing function-
als F,G : DT → R

+,

E[F(Zt , t ≤ T )G(Zt , t ≤ T )] ≥ E[F(Zt , t ≤ T )]E[G(Zt , t ≤ T )], (2.8)

(here we set DT for the Skorokhod space of càdlàg functions from [0, T ] to R, and we
say that a functional F : DT → R

+ is increasing if for every x, y ∈ DT , xt ≥ yt∀t ≤
T �⇒ F(xt , t ≤ T ) ≥ F(yt , t ≤ T ).) Since Bn is a monotonic event, our desired condi-
tioned version of (2.8)

En[F(Zt , t ≤ T )G(Zt , t ≤ T )] ≥ En[F(Zt , t ≤ T )]En[G(Zt , t ≤ T )] (2.9)

would be fulfilled if P satisfied the so-called strong FKG inequality. However, there
exist some path-measures which are FKG but not strong FKG—we learned this from
J.-D. Deuschel, and we do not know if it is the case for P or not. In particular we could
not prove (2.9) directly, even in the Brownian case.

3 Proof of Theorem A

Recall that we are interested in the Hausdorff dimension of the random set

L = {
a(x), x ∈ R and a(x−) = a(x)

}
,
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where a(x) := max{s ≥ 0,C ′(s) ≤ x} and C ′ is the right-derivative of C, the convex hull of
the function

x 
→
∫ x

0
(Xu + u)du, x ∈ R.

Recall also that X is a two-sided α-stable Lévy process (α > 1) with positive jumps as
defined in (1.4), and fix its positivity parameter ρ < 1/α once and for all.

Notice that by definition X does not jump negatively at time l whenever l ∈ L: Xl ≥ Xl−
a.s. On the other hand, it is well possible that l ∈ L is a “conical point” in the sense that
Xl > Xl−. However, if we define

L̂ = {
a(x), x ∈ R, a(x−) = a(x) and Xa(x) = Xa(x)−

}
,

we see from the fact that the set of points of discontinuity of X is a.s. countable that

DimHL = DimH L̂ a.s.

The key-point—which was first noticed by Sinai [21] in the Brownian case—is that a.s.

L̂ ⊆ L̄ :=
{
a ∈ R/

∫ x

0
(Xu + u)du ≥

∫ a

0
(Xu + u)du + (x − a)(Xa + a),∀x ∈ R

}
,

so that we only need to get an upper bound on DimH L̄. To do so, we will use (2.1) together
with the same arguments as Molchan and Khokhlov [16]. First, a slight modification of
Lemma 1 in [16] shows that Theorem A will be proved as soon as there exists a constant
κ > 0 independent of α and a subsequence δn → 0 such that

P
[
L̄∩ (x − δn, x + δn) �= ∅] ≤ δκ

n , n → ∞
uniformly in x ∈ R. Indeed, reasoning exactly as In Lemma 1 in [16] entails then

DimH L̄ ≤ 1 − κ a.s.

and completes the proof of the theorem with α0 = 1/(1 − κ). Second, we remark that by
linearity of the integral and by independence and stationarity of the increments of the process
u 
→ Xu + u, the random sets

L̄∩ (x − δn, x + δn), x ∈ R

have all the same law up to translation. Hence, we need to show that there exists a constant
κ > 0 independent of α such that

lim inf
δ→0

δ−κ
P[L̄δ �= ∅] = 0, (3.1)

where for every δ > 0 we wrote

L̄δ =
{
|a| < δ/

∫ x

0
(Xu + u)du ≥

∫ a

0
(Xu + u)du + (x − a)(Xa + a),∀x ∈ R

}
.

For every δ > 0, set Fδ for the completed filtration generated by {Xu, |u| ≤ δ}, and consider
the Fδ-measurable random variables

Mδ = sup
|x|≤δ

|Xx + x| and Nδ = sup
|x|≤δ

∣∣∣∣
∫ x

0
(Xu + u)du

∣∣∣∣.
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If X̂ = −X and Ẑ = −Z denote the dual processes of X and Z respectively, we see that a.s.

{L̄δ �= ∅} ⊆
{∫ x

0
(X̂u − u)du ≤ Nδ + (δ + |x|)Mδ∀x ∈ R

}
⊆ Aδ ∩A′

δ

with the notation

Aδ =
{∫ x

δ

((Ẑu − Ẑδ) − (u − δ))du ≤ 2Nδ + 3xMδ∀x ≥ δ

}
,

and

A′
δ =

{∫ x

δ

((Ẑ′
u − Ẑ′

δ) − (u − δ))du ≤ 2Nδ + 3xMδ∀x ≥ δ

}
,

where Ẑ′ is an independent copy of Ẑ. By the Markov property, the events Aδ and A′
δ are

independent and identically distributed conditionally on Fδ, so that

P[L̄δ �= ∅] = E[P[L̄δ �= ∅ | Fδ]] ≤ E[P[Aδ ∩A′
δ | Fδ]] = E[P[Aδ | Fδ]2]. (3.2)

Besides, again by the Markov property, we can write

P[Aδ | Fδ] = P

[∫ t

0
Ludu ≤ 2n + 3(t + δ)m + t2/2,∀t ≥ 0

]
n=Nδ,m=Mδ

,

where L is a copy of Ẑ independent of Fδ . Now since α > 1 and by the scaling property
of X, it is immediate to see that a.s. Nδ ≤ δ1+1/α(1 + N) and Mδ ≤ δ1/α(1 + M) as soon as
δ < 1, where M,N are Fδ-measurable and such that

M
d= sup

|x|≤1
|Xx | and N

d= sup
|x|≤1

∣∣∣∣
∫ x

0
Xudu

∣∣∣∣.

Setting ε = δ(α+1)/2α and R = max{5 + 2N + 3M,(3(1 + M))α+1} for conciseness, we can
rewrite

P[Aδ | Fδ] ≤ P

[∫ t

0
Ludu ≤ ε2r + (ε2r)1/(α+1)t + t2/2, ∀t ∈ [0,1]

]
r=R

.

Returning to (3.2), we obtain

P[L̄δ �= ∅] ≤ P[R ≥ ε−1] +
(

P

[∫ t

0
Ludu ≤ ε + ε1/(α+1)t + t2/2,∀t ∈ [0,1]

])2

≤ (cδ)1/2 +
(

P

[∫ t

0
Ludu ≤ ε + ε1/(α+1)t + t2, ∀t ∈ [0,1]

])2

,

for some c > 0, where in the third line we used well-known estimates on the upper tails of
supremum of stable processes, see e.g. Theorem 10.5.1. in [18]. A scaling argument yields

P

[∫ t

0
Ludu ≤ ε + ε1/(α+1)t + t2,∀t ∈ [0,1]

]
= P

[∫ t

0
Ludu ≤ 1 + t + n−γ t2,∀t ∈ [0, n]

]
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where n = ε−α/(α+1) = 1/
√

2δ. Finally, since L
d= −Z has negative jumps, we see from (2.1)

that there exists κ > 0 depending only on ρ such that

lim inf
δ→0

δ−κ
P[L̄δ �= ∅] = 0,

which is (3.1) and completes the proof. �

4 Two Conjectures

Let us start by a classical result of Bingham concerning the asymptotics of the ruin proba-
bilities related to the stable process Z: if we set S = inf{t > 0,Zt > 1}, then there exists a
constant c ∈ (0,∞) such that

P[S > t] ∼ ct−ρ, t → +∞ (4.1)

as soon as |Z| is not a subordinator, see Proposition VIII. 2 in [2]. Notice in passing that
the constant c equals αpZ1(0) when Z has no positive jumps—this is a consequence of
Skorokhod’s formula written e.g. in [4] p. 749—and (κ cos(πα/2))1/α/�(α)�(1/α) when
Z has no negative jumps—this is a consequence of Theorem 1 in [1]—and that in the other
cases it can be given (non explicitly) in terms of the excursion measure associated to the
reflected process, see Lemma 1 in [8]. Considering now T = inf{t > 0,At = 1} the first-
passage time of the integral of Z across 1, from (4.1) it is tantalizing to state the

Conjecture C Suppose that |Z| is not a subordinator. Then

P[T > t] = t−ρ/2+o(1), t → +∞.

The Brownian case α = 2 and ρ = 1/2 had been obtained in [11] after expanding a
closed formula of McKean concerning the distribution of T , which yields actually a more
accurate estimate like (4.1) with an explicit constant for c, see Proposition 2 therein. The
case with no negative jumps α > 1 and ρ = (α − 1)/α was proved recently in [20], with a
good control on o(1) allowing to show that E[T ρ/2] = +∞. The above Conjecture is also
motivated by the aforementioned fact that Z and A have the same positivity parameter ρ, a
quantity which should typically play a rôle in the distribution of T . On the other hand, the
supremum process of A is smaller than that of Z, so that the upper tails of the distribution
of T should be heavier than those of S. We propose the value ρ/2 for the critical exponent,
since it is in accordance with the spectrally positive case. Conjecture C will be the matter of
further research.

Suppose now α > 1 and consider the drifted stable process Zc
t = Zt + ct , t ≥ 0, for some

c �= 0. From Lemma VI.21 in [2] and explicit estimates on the renewal function of Zc, one
can show that

P[Zc
t < ε,∀t ∈ [0,1]] � ερα, ε → 0,

for every c ∈ R. Notice also that the latter estimate is false when α = 1 by Bingham’s result,
since Zc is then a strictly stable process whose positivity parameter depends on c. We think
that the estimate is also untrue when α < 1, but we got stuck in proving this. Setting Ac for
the integral of Zc , we believe from the above fact that when α > 1,

P[Ac
t < ε,∀t ∈ [0,1]] = ερα/(α+1)+o(1), ε → 0, (4.2)
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for every c ∈ R. By self-similarity, notice that this estimate is the same as Conjecture C
when c = 0. When c < 0, it is particularly relevant for the inviscid Burgers equation whose
initial data is the two-sided dual process Ẑ. Indeed, reasoning as in the proof of Theorem A,
one can show that the upper bound in (4.2) entails DimHL ≤ ρ̂ a.s. where ρ̂ = 1 − ρ is
the positivity parameter of Ẑ. Considering now (1.1) where the initial data is the two-sided
dual process Z, from Conjecture C, the above considerations and Bertoin’s result [3], one is
tempted to state the

Conjecture D With the above notation, for every α > 1 and every ρ ∈ [1 − 1/α,1/α] one
has

DimHL = ρ a.s.

From the present paper, we are convinced that optimal lower tail estimates for the integral
of Ẑ should provide the key-argument to obtain the upper bound in Conjecture D. The lower
bound seems more delicate because of the positive jumps of Ẑ which prevent from using
Handa’s criterion [12]. On the other hand, it is immediate to see from its definition that the
set Lt contains the points of global increase of the drifted process Z1/t for every t > 0,
and one may wonder if the methods developed by Marsalle [15] to determine the Hausdorff
dimension of the points of local increase of the non-drifted process Z, could not be useful.

Acknowledgements I am very grateful to F. Caravenna and J.-D. Deuschel for having made me aware
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